Bases of the intersection cohomology of Grassmannian Schubert varieties

نویسندگان

چکیده

The parabolic Kazhdan–Lusztig polynomials for Grassmannians can be computed by counting Dyck partitions. We “lift” this combinatorial formula to the corresponding category of singular Soergel bimodules obtain bases Hom spaces between indecomposable objects. In particular, we describe intersection cohomology Schubert varieties in parametrized partitions which extend (after dualizing) classical basis ordinary cohomology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The intersection cohomology of Schubert varieties is a combinatorial invariant

We give an explicit and entirely poset-theoretic way to compute, for any permutation v, all the Kazhdan–Lusztig polynomials Px,y for x, y ≤ v, starting from the Bruhat interval [e, v] as an abstract poset. This proves, in particular, that the intersection cohomology of Schubert varieties depends only on the inclusion relations between the closures of its Schubert cells. © 2003 Elsevier Ltd. All...

متن کامل

Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian

Let LGn denote the Lagrangian Grassmannian parametrizing maximal isotropic (Lagrangian) subspaces of a fixed symplectic vector space of dimension 2n. For each strict partition λ = (λ1, . . . , λk) with λ1 ≤ n there is a Schubert variety X(λ). Let T denote a maximal torus of the symplectic group acting on LGn. Consider the T -equivariant cohomology of LGn and the T -equivariant fundamental class...

متن کامل

Intersection cohomology of reductive varieties

We extend the methods developed in our earlier work to algorithmically compute the intersection cohomology Betti numbers of reductive varieties. These form a class of highly symmetric varieties that includes equivariant compactifications of reductive groups. Thereby, we extend a well-known algorithm for toric varieties.

متن کامل

Intersection cohomology invariants of complex algebraic varieties

In this note we use the deep BBDG decomposition theorem in order to give a new proof of the so-called “stratified multiplicative property” for certain intersection cohomology invariants of complex algebraic varieties.

متن کامل

Cohomology of Line Bundles on Schubert Varieties-i

The aim of this paper is to begin a study of the cohomology modules H(X(w),Lλ) for non-dominant weights λ on Schubert varieties X(w) in G/B. The aim is to set-up a combinatorial dictionary for describing the cohomology modules and give criteria for their vanishing. Here Lλ denotes the line bundle on X(w) corresponding to the 1-dimensional representation of B given by the character λ.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.10.003